Lateral Diffusion of Reconstituted Alkylferrocenecarboxamide/Phosphatidylcholine Lipid Monolayer at the Air/Water Interface Studied with Electrochemistry
نویسندگان
چکیده
Lateral diffusion of alkylferrocenecarboxamide (FcCONHCn)/1,2-dilauroyl-sn-glycero-3-phosphatidylcholine lipid monolayer at the air/water interface was determined with electrochemical techniques using a fabricated microline electrode. The prepared homogeneous Langmuir monolayer of electroactive FcCONHCn/ phospholipid was identified with pressure-area isotherms in the subphase of 50 mM HClO4. The diffusion constant of electroactive FcCONHCn in the lipid monolayer was approximately between 0.1 × 10-6 and 2.6 × 10-6 cm2/s at room temperature. The diffusion constant of ferrocenes in a phospholipid monolayer at the air/water interface was greater for the ferrocene with longer alkyl chains. This is interpreted as the extent of hydrodynamic coupling of the hydrophilic ferrocene moiety of FcCONHCn to the subphase, which was less for ferrocenes with longer alkyl chains. This lets the position of the hydrophilic headgroup of FcCONHCn with respect to the air/water interface be shifted upward for the longer alkyl chain because of greater hydrophobic entanglement. The electrochemistry with the microline electrode was possible in the mean molecular area range 60-100 Å2/mol because of monolayer adsorption in a mean molecular area that is less than 60 Å2/mol. The linear decrease of the diffusion constant of ferrocenes with decreasing mean molecular area is explained by the decreasing free volume of the moving headgroup. This is well explained by the modified Cohen-Turnbull free volume model.
منابع مشابه
Lateral pressure profiles in lipid monolayers.
We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oillair and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are qualitatively similar in both atomistic and coarse-grained models. The lateral pressure profile in a ...
متن کاملCritical shape transitions of monolayer lipid domains.
Fluorescence microscopy can be used to visualize coexisting fluid phases in lipid monolayers composed of cholesterol and dipalmitoyl phosphatidylcholine under specified conditions of temperature, composition, and lateral pressure. At a critical composition of approximately 30 mol% cholesterol, decreasing the average molecular area below a(c) [unk]50 A(2) per molecule forces the binary mixture t...
متن کاملEffect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy.
The influence of the hydrophobic proteins SP-B and SP-C, isolated from pulmonary surfactant, on the morphology of binary monomolecular lipid films containing phosphocholine and phosphoglycerol (DPPC and DPPG) at the air-water interface has been studied using epifluorescence and dark-field microscopy. In contrast to previously published studies, the monolayer experiments used the entire hydropho...
متن کاملNonequilibrium behavior in supported lipid membranes containing cholesterol.
We investigate lateral organization of lipid domains in vesicles versus supported membranes and monolayers. The lipid mixtures used are predominantly DOPC/DPPC/Chol and DOPC/BSM/Chol, which have been previously shown to produce coexisting liquid phases in vesicles and monolayers. In a monolayer at an air-water interface, these lipids have miscibility transition pressures of approximately 12-15 ...
متن کاملCritical pressures in multicomponent lipid monolayers.
Epifluorescence microscopy has been used previously to study coexisting liquid phases in lipid monolayers of dihydrocholesterol and dimyristoylphosphatidylcholine at the air/water interface. This binary mixture has a critical point at room temperature (22 degrees C), a monolayer pressure of approx. 10 mN/m, and a composition in the vicinity of 20-30 mol% dihydrocholesterol. It is reported here ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998